
Logic and Discrete Structures -LDS

Course 2
Lecturer Dr. Eng. Cătălin Iapă

e- mail: catalin.iapa@cs.upt.ro

Facebook : Catalin Iapa

cv: Catalin Iapa

1

What did we do last time?

Demonstrations (Proofs)
Sets
Functions
Properties of Functions
Functions in Programming

2

What did we do last time?

Sets
- Element of a set - Subsets

Functions
- Definitions, Domain, Codomain, Association,
- Examples that are not functions,
- injective, surjective, bijective

Functions in PYTHON
def f(x):

return x + 3

3

What did we do last time?

Demonstrations

4

What did we do last time?

Can we prove that if we erase any pair of squares, one
white and one black, we can still cover the board?

5

What did we do last time?

Can we prove that if we erase any pair of squares, one
white and one black, we can still cover the board?

6

What did we do last time?
Demonstration by example
Proof by contradiction

A statement is equivalent to its contrapositive:
𝑃⇒𝑄 ⇔ ¬𝑄⇒¬P

the statemant the contrapositive

Proof by mathematical induction

If a sentence P (n) depends on a natural number n
and :

1) base case : P (1) is true
2) the inductive step: for any n≥ 1
P(n) ⇒ P(n + 1)

then P(n) is true for any n .

7

What did we do last time?
Proof by mathematical induction
If a sentence P (n) depends on a natural number n and :

1) base case : P (1) is true

2) the inductive step: for any n≥ 1

P(n) ⇒ P(n + 1)

then P(n) is true for any n .

-- --------------
What is the mathematical induction reasoning based
on?

- P(1) proved to be true

- P(1) ⇒ P(2), P(2) ⇒ P(3), ... , P(n-1) ⇒ P(n),
...

8

Complete Mathematical Induction

If a sentence P (n) depends on a natural number n and :

1) base case : P (1) is true

2) the inductive step: for any n≥ 1

P(1) and P(2) and P(3) and ... and P(n) ⇒ P(n + 1) is
true

then P(n) is true for any n .

9

Complete Mathematical Induction

• Let's learn complete mathematical induction
through a game!

10

Complete Mathematical Induction

Let's prove: Whatever strategy we choose to play, we will get
the same score for the same number of pieces, S(n)

Ex: S(8)=28 S(8)=56/2 S(8)=(7*8)/2

S(n)=((n-1)*n)/2

P(n)

base case P(1)=0

Inductive step: P(1) and P(2) and P(3) and ... and P(n)⇒P(n+1)

P(n+1)=P(k)+P(n+1-k), k <n

The score S(n+1) = k*(n+1-k) + P(k) + P(n+1-k)

It we need to prove that this score depends only on
n, not k

11

Complete Mathematical Induction

S(n+1) = k*(n+1-k) + P(k) + P(n+1-k)

S(n+1)= k*(n+1-k) +
k(k−1)

2
+

(𝑛+1−𝑘)(𝑛−𝑘)

2

S(n+1)=
2kn+2k−2𝑘2+𝑘2−𝑘+𝑛2−𝑛𝑘+𝑛−𝑘−𝑛𝑘+𝑘2

2

S(n+1)=
(2kn−𝑛𝑘−𝑛𝑘)+(2k−𝑘−𝑘)+(−2𝑘2+𝑘2+𝑘2)+𝑛2+𝑛

2

S(n+1)=
𝑛2+𝑛

2

S(n+1)=
𝑛(𝑛+1)

2
12

What did we do last time?
Complete Mathematical Induction
Sets, Tuples, Cartesian product
Functions – composition, invertible
Counting problems
Composition of functions in PYTHON

Inductively defined sets

13

The cardinality of a set

The cardinality of a set is the number of elements in the
set.

The cardinality of a set is denoted as|A| .
We can have finite cardinalities: |{1, 2, 3, 4, 5}| = 5 or
infinite cardinalities : N, R, etc.

What is the cardinality of an infinite set? |N| = |R| = ∞ ?
Not. We have different cardinalities for infinite sets:
|N| = ℵ0 – the smaller infinite

|R| =2ℵ0

14

TUPLES

An n-tuple is a string of n elements (x1, x2, ... ,xn)

Properties :

- the elements are not necessarily distinct

- the order of the elements in the tuple matters

Special cases: pair or twins (a, b), triple or triad (x,
y, z), etc.

15

Cartesian product

The Cartesian product of two sets is the set of pairs

A × B = {(a, b) | a ∈ A, b ∈ B }

The Cartesian product of n sets is the set of n −
tuples

A 1 × A 2 × . . . × A n = {(x 1 , x 2 , . . . , x n) | x i ∈ A i , 1 ≤ i
≤ n }

If the sets are finite, then

| A 1 × A 2 × . . . × A n | = | A 1 | · | A 2 | · . . . · | A n |

16

What did we do last time?
Complete Mathematical Induction
Sets, Tuples, Cartesian Product
Functions – composition, invertible
Counting Problems
Compiling Functions in PYTHON

Inductively defined sets

17

Function Composition

Let the functions f : A → B and g : B → C .

Then the composition of f followed by g:

g ◦ f : A → C (g ◦ f)(x) = g (f (x))

We can compose g ◦ f only if the codomain of f = the domain
of g !

18
Image: http://en.wikipedia.org/wiki/File:Compufun.svg

Properties of Function Composition

• Function composition is associative:
(f ◦ g) ◦ h = f ◦ (g ◦ h)

• Proof :

((f ◦ g) ◦ h)(x) =
rewrite ◦ = (f ◦ g)(h (x))
rewrite ◦ = f (g (h (x)))

• The composition is not necessarily commutative
• Can you give an example for which f ◦ g ≠ g ◦ f ?

19

(f ◦ (g ◦ h))(x) =
rewrite ◦ = f ((g ◦ h)(x))
rewrite ◦ = f (g (h (x)))

Powers of Function

If f is a function on a set A, then the compositions f
◦ f, f ◦ f ◦ f, . . . are valid, and we denote them as f 2 ,
f 3 , . . .

Definition:

Let f : A → A

• f 1 = f; that is, f 1 (a) = f(a), for a ∈ A

• For n ≥ 1, f n+1 = f ◦ f n; that is, f n+1(a) = f (f n(a)) for
a ∈ A.

20

Invertible functions

On any set A we can define the identity function:

IDA: A→A, idA (x) = x (often noted 1A or iA)

A function f : A → B is invertible if it exists a
function

f − 1 : B → A such that

– f − 1 ◦ f = idA and

– f ◦ f − 1 = idB . (f − 1 , read “f inverse“)

21

Invertible functions

A function is invertible if and only if it is
bijective.

Bijections have inverses.

Let f : A → A. f −1 exists if and only if f is a
bijection; f is one-to-one and onto.

22

What did we do last time?
Complete Mathematical Induction

Sets, Tuples, Cartesian Product
Functions - Composition, Invertible
Counting Problems
Compiling functions in PYTHON

Inductively defined sets

23

How many functions are there from A
to B?

If A and B are finite sets, there are

|B||A|functions from A to B . (every element of
B can be mapped to any element of A)

Proof : by mathematical induction after |A|

The set of functions f : A → B is sometimes
denoted by B A

The notation reminds us that the number of
these functions is |B| |A|

24

How many injective functions are there from
A to B?

If A and B are finite sets and f : A → B is injective
⇒|f (A)|=|A| (the image of f will have|A|
elements)

The order in which we choose the elements
matters! (different orders ⇒ different functions)

... so we have arrangements of | B | taken as | A |

⇒ exists 𝐴|𝐵|
|𝐴|

=
𝐵 !

(𝐵 −|𝐴|)!
injective functions

25

How many bijective functions does A to B
exist?

If A and B are finite sets and f : A → B is bijective

⇒ | f (A)| = | A | = | B | (the image of f will have
|A| elements).

The order in which we choose the elements
matters!

... so we have permutations of | A | element

⇒ exists P|A| = |A|! bijective functions

26

What did we do last time?
Complete Mathematical Induction

Sets, Tuples, Cartesian Product
Functions - Composition, Invertible
Counting Problems
Composition of Functions in PYTHON

Inductively defined sets

27

Types of data

Python provides 4 types of primitive data :
– Integer
– Float
– String
– Boolean

The primitive data types in Python are immutable. This
means that once they are created, their values cannot be
changed. If a
If you assign a new value to a variable of a primitive data
type, a new object is created with the updated value,
rather than modifying the original object.

28

Integer

Integers represent whole numbers without
decimal points.

They can be positive or negative, and there is no
limit to their size.

Ex: 3, 6, -234.

29

Float

Floats, or floating-point numbers, represent
numbers with decimal points.

They can also be positive or negative and can
have a fractional part.

Ex : 3.34, -0.123456.

30

Float

2 is an integer value. For a real value (float) we must write
2.0 (or abbreviated 2.).

In Python the type conversion from int to float is done
automatically. Thus, the result of operations containing
both integers and real numbers will be a real number
(e.g. 5 + 2.0 will give 7.0).

We can also use the float() function if we want to do a
conversion explicitly:

>>> float (3 * 2)

6.0

31

String

Strings are sequences of characters enclosed in single or
double quotation marks.
They are used to represent text and can contain letters,
numbers, symbols, and spaces.
Example : 'book', "23abc ".

Concatenation is a common operation when working with
strings, and it allows us to build longer strings by
combining smaller ones. This is done by the + operator :
>>> ' abc ' + ' def '
' abcdef '

32

String

The characters from a string can be accessed via "string"[index]:

>>> 'A string'[2]
's'

The result is the third character (character numbering starts from 0).
Python also allows accessing characters using negative index values.

For the example below, selecting any other integer that is outside the
range [-8; 7] will generate an exception

'A ' ' ' 's ' 't ' 'r' 'i' 'n' 'g'
0 1 2 3 4 5 6 7

-8 -7 -6 -5 -4 -3 -2 -1

33

>>> 'A string'[-8]
'A'

Boolean

Booleans are a special type that can have one of two
values: True or False.
They are often used in logical operations and conditional
statements.
>>> 3 == 4

False
Using comparison operators == (equal), ! = (different), >
(bigger), < (smaller), > = (bigger or equa), < = (smaller or
equal), we can make comparisons between different
expressions.
To write more complicated conditions we can use the
keywords and, or and not.

34

Predefined types for data collections

In Python, there are several predefined types for
data collections.

These types allow us to store and manipulate
collections of data in a structured manner.

The four main predefined types for data collections
in Python are:

– List

– Tuple

– Set

– Dictionary

35

List

A list is an ordered collection of elements, enclosed in
square brackets ([]).
It can contain elements of different types and allows for
duplicate values.
Lists are mutable, meaning that we can modify their
elements.

even = [0, 2, 4, 6, 8]
If we want to access a list item we do the same as for
strings
Example : if we want to access the second item in the
even list we write even[1], in this case also indexing from
0.

36

Tuple

A tuple is similar to a list, but it is enclosed in
parentheses (()).

Tuples are also ordered collections, but unlike
lists, they are immutable, meaning that their
elements cannot be modified once defined.

tuple_even_numbers = (0, 2, 4, 6, 8)

37

Set

A set is an unordered collection of unique
elements, enclosed in curly braces ({}).

Sets do not allow duplicate values, and they are
mutable, meaning that we can add or remove
elements from them.

a_set = {6, 0, 2, 4, 8}

38

Dictionary

A dictionary is a collection of key-value pairs,
enclosed in curly braces ({}).

Each element in a dictionary consists of a key and
its corresponding value.

Dictionaries are mutable and allow for efficient
lookup of values based on their keys.

dict= {1:”one”, 2:”two”}

39

Function Composition

• The result of function f
becomes the argument
to function g

• By composition, we
construct complex
functions from simpler
functions.

40Image: http://en.wikipedia.org/wiki/File:Function_machine5.svg

Function Composition in PYTHON

Composing functions is the way in which the
result produced by one function is used as a
parameter in another function.

If we have two functions, f and g, their
composition is represented as: f(g(x)), where x is
the argument to function g, and the result of
function g(x) becomes the argument to function
f

41

Function Composition in PYTHON

def sum (x):

return x + 10

def product (x):

return x * 10

print(product (sum (5))) # (5+10)*10

150

42

Function Composition in PYTHON
We can also create a new function that combines 2
existing functions:

def sum (x):
return x + 10

def product (x):
return x * 10

def compound_function (f, g):
return lambda x : f(g(x))

product_sum = compound_function(product, sum)
print (product_sum(2))

43

Composition of 3 functions in Python
def sum (x):

return x + 10

def product (x):

return x * 10

def difference (x):

return x - 2

def compound_function (f, g):

return lambda x : f(g(x))

product_difference_sum = compound_function(product,
compound_function(difference, sum))

print (sum_difference_product(2))
44

A function can be returned by another
function in PYTHON

Functions can return another function

def create_adder (x):
def adder(y):

return x+y
return adder

add_15 = create_adder (15)
print (add_15(10))

OUTPUT:
25

45Example retrieved from : https://www.geeksforgeeks.org/first-class-functions-python/?ref=lbp

Functions - extra information

We can write the value of the arguments and
the result in code:

def sum(a : int , b : int) -> int :

c = a + b

return c

46

Functions - extra information
We can write functions with predefined arguments:

def sum (x , y= 10):
return x+y

We can call the function with only one parameter:

sum (8) sum(1,2)
--
OUTPUT:
18 3

47

Functions - extra information
When calling, we can write the parameters in a different order
than in the function definition:

def difference (n1 , n2):
return n1-n2

We can call the function:
difference (n1= 10 , n2= 3)
difference (n2= 3 , n1= 10)
--
OUTPUTS:
7
7

48

Summary of functions

By functions we express calculations in
programming.

The definition fields and values correspond to
the types in programming.

In functional languages, functions can be
manipulated like any values. Functions can be
arguments and results of functions.

49

What do we know so far?/
What should we know?

• We know the properties of functions and how to
use them: injective, surjective, bijective,
invertible functions;

• We know how to construct functions with certain
properties;

• We know how to count functions defined on
finite multitudes (with given properties);

• We know how to compose simple functions to
solve problems;

• We know how to identify the type of a function.

50

Thank you!

51

Bibliography

• The full math induction game was inspired by the
Mathemati cs for Computer Science course from
Massachusetts Institute of Technology (from
https://ocw.mit.edu /)

• The content of the course is mainly based on the materials
of the past years from the LSD course, taught by Prof. Dr.
Marius Minea et al. Dr. Eng. Casandra Holotescu (
http://staff.cs.upt.ro/~marius/curs/lsd/index.html)

52

http://staff.cs.upt.ro/~marius/curs/lsd/index.html

